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Inertial effects on fibre motion in simple
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The motion of a torque-free slender axisymmetric fibre in simple shear flow is
examined theoretically for small but finite Re, where Re is the Reynolds number
based on the fibre length, and is a measure of the inertial forces in the fluid.
In the limit of zero inertia, an axisymmetric particle in simple shear is known to
rotate indefinitely in any of an infinite single-parameter family of periodic orbits,
originally found by Jeffery (1922) – a degenerate situation wherein the particular
choice of orbit is dictated by the initial orientation of the particle. We use a
generalization of the well-known reciprocal theorem for Stokes flow to derive the
orbit equations, to O(Re), for the slender fibre. The structure of the equations bears
some resemblance to those previously derived by Leal (1975) for a neutrally buoyant
fibre in a viscoelastic (second-order) fluid. It is thereby shown that fluid inertia, for
small Re, leads to a slow O(Re) drift of the rotating fibre toward the shearing plane,
thereby eliminating the aforementioned degeneracy. For Reynolds numbers above
a critical value, Rec = (15/4π)(ln κ/βκ) sin−2 θ , the fibre ceases to rotate, however,
instead drifting monotonically towards the shearing plane. The limiting stationary
orientation in the flow–gradient plane makes an angle φf with the flow direction, where

φf = 4πRe/(15 ln κ) + {16πRe2/(225(ln κ)2 − 1/(β2κ2)}1/2 is an increasing function of
Re. Here, κ is the fibre aspect ratio, θ is the angle made by the fibre with the vorticity
axis, and β is an O(1) coefficient related to the Jeffery period of the rotating fibre.

1. Introduction
The object of this study is to investigate the effects of fluid inertia on the orientation

of non-interacting slender non-Brownian fibres in simple shear flow. Fluid inertia is
characterized by the Reynolds number based on the length of the fibre, defined as
Re = γ̇ l2/ν, where l is the fibre half-length, γ̇ is the shear rate and ν is the kinematic
viscosity of the suspending fluid. The behaviour of a single fibre in simple shear flow,
in the absence of inertia, has been known since the work of Jeffery (1922) on ellipsoids
in viscous shear flows. In this limit the velocity disturbance due to the fibre satisfies
the quasi-steady Stokes equations; a force-free, torque-free fibre in simple shear then
rotates in one of an infinite family of one-parameter closed orbits, the so-called
‘Jeffery’ orbits. The orbits are bounded at one end by a circular orbit in the shearing
plane, entailing a tumbling motion, and at the other extreme by a rolling motion of
the fibre about the vorticity axis. The particular choice of orbit, however, depends on
the initial fibre orientation. Several factors including Brownian motion, hydrodynamic
interactions, etc. have therefore been considered by earlier authors (for instance, see
Leal & Hinch 1971; Rahnama et al. 1993) with the intent of obtaining a unique
steady-state orientation distribution. Herein, we consider the presence of inertia in
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the suspending fluid as a possible means of eliminating this degeneracy. The present
investigation is motivated, in part, by its relevance in the paper and pulp industry,
where the orientation distribution of the cellulose fibres in the final paper product is a
key determinant of its quality. Since the intermediate processing involves high-speed
flows of fibre suspensions, inertial effects may exercise an important influence on the
resulting fibre distribution.

We examine the case where Re, as defined above, is small but finite, the Reynolds
number based on the diameter d of the fibre, Red = ldγ̇ /ν, still being negligible. This
ensures that the flow in the immediate vicinity of the fibre, i.e. for distances r � l,
may still be regarded as a viscous Stokes flow, but that inertia becomes important
on scales comparable to or larger than the fibre length. Owing to the high aspect
ratio (κ = 2l/d � 1) of the fibre, the techniques of slender-body theory (see Cox 1970;
Batchelor 1970 for a detailed description) may be applied to the present problem.
This is a singular perturbation method where the velocity disturbance and pressure
fields are approximated by quasi-two-dimensional solutions of the Stokes equations
in an ‘inner’ region of O(d) around the fibre axis. These are then matched to the
‘outer’ flow field valid at distances of O(l). For our case, the velocity and pressure
fields in the outer region must be obtained for small but finite Re by solving the
linearized Navier–Stokes equations, treating the fibre as a line distribution of forces;
the linearization becomes possible since the fibre velocity disturbance, at distances
of O(l), is only O(1/ ln κ) relative to the ambient shear flow. While the above
method works in principle, the details of deriving the outer inertial velocity field and
subsequent matching of the limiting forms of the flow fields in the inner and outer
regions would entail a forbidding amount of algebra. This is, in fact, readily seen in
the work of Khayat & Cox (1989), who looked at the effects of inertia in the simpler
context of a fibre translating with a fixed orientation in a quiescent fluid.

Therefore, in order to analyse the first effects of fluid inertia on the Jeffery orbits
of a single neutrally buoyant torque-free fibre in simple shear flow, we use instead
a generalization of the well-known reciprocal theorem (for instance, see Happel &
Brenner 1973) for finite Re. A similar approach has previously been employed for
determining the drag on an unsteadily translating spherical particle (see Lovalventi &
Brady 1993), and more recently, in the context of the finite-Re rheology of suspensions
(see Stone Brady & Lovalenti 2005). It is then shown that the leading-order inertial
contribution to the fibre torque is regular, being O(Re), and the dominant contribution
arises from a region of O(l) around the fibre. This not only allows neglect of the
finite fibre thickness, enabling calculations to be performed in Fourier space, but
also helps circumvent the difficulty associated with the non-uniform nature of the
leading-order Stokes approximation for the velocity disturbance in an infinite domain
(see § 3). The latter fact significantly simplifies the analysis. The resulting simplicity is
in sharp contrast to the aforementioned matched asymptotic expansion framework,
and allows one to focus on the physical mechanisms at work.

There have been several recent numerical investigations of inertial effects in the
dynamics of orientable bodies with aspect ratios of order unity, sedimenting under
gravity in a quiescent fluid (see Feng, Hu & Joseph 1994), and freely suspended in
an ambient shear flow (Aidun, Lu & Ding 1998; Ding & Aidun 2000; Qi & Luo
2003). The only previous work that examines slender-fibre motion analytically at finite
Reynolds numbers, however, is that of Khayat & Cox (1989), referred to above, who
considered a fibre translating with a fixed orientation; the Reynolds number for this
case is Resed = Ul/ν, U being the velocity of translation. In the limit κ � 1, the outer
flow field for this problem is governed by the Oseen equation for a line distribution of
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forces, and an analytical determination of the torque becomes possible even for O(1)
values of Resed. The authors found the asymmetry of the Oseen solution to lead to a
non-zero torque at finite Resed for all orientations of the fibre except when it translates
with its axis vertical (longitudinal) or horizontal (transverse). The direction of this
inertial torque is such that vertical alignment is an unstable fixed point. The fibre
thus tends to orient broadside-on for all finite Resed, a result intuitively understood
by regarding the sedimenting fibre as a line distribution of ‘Oseen-lets’, and keeping
in mind the nature of the fore–aft asymmetry of the associated velocity fields for
finite Resed. In the Appendix we show the applicability of the reciprocal theorem
formulation to this problem by rederiving the expression for the finite-Resed torque.
In particular, determining the O(Resed) torque again requires only knowledge of the
corresponding Stokes solution for the velocity disturbance, thereby simplifying the
calculation of the first effects of inertia; this is also indicative of the regular nature
of the O(Resed) correction.

We briefly comment on extending the current analysis for perturbative effects of
inertia to O(1) values of Re. In this regard, it helps to highlight the difference between
the problem of a translating (sedimenting) fibre analysed by Khayat & Cox (1989),
and that of a neutrally buoyant fibre in simple shear flow. A fibre sedimenting in a
quiescent fluid maintains a steady orientation in the Stokes limit. The inertial torque
acting to stabilize the transverse orientation is only O(1/(ln κ)2) even for O(1) Resed,
leading to a linear instantaneous relationship between the torque and the induced
angular velocity, at leading order, for large κ . This then renders the determination of
the torque on a fibre with a fixed orientation, or the angular velocity of a torque-free
sedimenting fibre, exactly equivalent. An inertialess fibre in simple shear, for the
most part however, behaves as an inextensible material line element, and rotates with
the flow. An analytical determination of the fibre angular velocity at O(1) Re must
therefore account for the unsteady contribution arising from its changing history of
angular acceleration. This history integral is not known in closed form beyond the
simplest cases; indeed, even that for an unsteadily translating sphere at small but finite
Reynolds number is extremely involved as evidenced in the work of Lovalenti & Brady
(1993). For a slender fibre, the governing Navier–Stokes equations may be linearized
to O(1/ ln κ), but the dependence of the fibre velocity disturbance on its orientation
is an added complication. Thus, a rigorous approach must, in essence, solve the full
initial value problem. Substantial simplification is possible for a fibre nearly aligned
with the flow–vorticity plane, since the fibre angular velocity is vanishingly small
for these orientations. This allows for a quasi-steady approximation. The analysis of
fibre motion in this limit is the subject of a forthcoming publication. It will be seen
later in § 3.1 that the aforementioned restriction on fibre orientation is only apparent;
the dominant changes in fibre trajectories occur when the inertial corrections to the
torque become comparable to the leading-order Jeffery contribution, and this happens
precisely for orientations sufficiently close to the flow–vorticity plane.

The paper is organized as follows. In section § 2, we describe our approach entailing
use of the reciprocal theorem to obtain an expression for the angular velocity of a
neutrally buoyant torque-free fibre in simple shear flow at finite Re. In § 3.1 we
evaluate the inertial correction to the fibre angular velocity in the limit of small
Re, where knowledge of the leading-order Stokes solution suffices. The governing
orbit equations are derived in § 3.1.1, and analysed in § 3.1.2; the modification to
the inertialess fibre trajectories takes the form of an O(Re) drift. In the limit of
infinite aspect ratio, however, the angular velocity of a flow-aligned fibre is zero, and
trajectories for both zero and finite Re approach the flow-aligned orientation for long
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times. We therefore include an algebraically small, O(κ−2), term in the equation for
the fibre phase, that causes the fibre to rotate across the flow–vorticity plane with an
O(κ−2) angular velocity; the latter term involves the equivalent aspect ratio of the
fibre, defined as κe = βκ , β being an O(1) constant related to the Jeffery period of
the rotating fibre. This then leads to the degenerate configuration of Jeffery orbits
for Stokes flow, and to finite-Re trajectories that spiral out toward the flow–gradient
plane. We also compare the predictions of our analysis to previous experimental
efforts in this section. Thereafter, in § 3.2, we discuss the physical origins for the drift
in both fibre orbit and phase, the latter, in particular, allowing for the existence of
non-rotating modes for Re above a critical value. It is argued that for the limits looked
at, the motions of a fibre and a dumbbell are similar, and the qualitative effects of
inertia remain identical in the two cases. Section 4 is devoted to an analysis of previous
related theoretical work. In § 5 we consider the motion of a fibre (dumbbell) under
the combined effects of sedimentation and shear, again in the limit of weak inertia.
The results in this section may be relevant to applications such as the blowing of
fibreglass insulation. A typical manufacturing protocol for this involves centrifuging
molten glass via the holes on the periphery of a rapidly rotating crown; the radiating
filaments are then blasted with a high-velocity gas as they settle to form a mat. The
fibre orientation distribution in the final fibreglass mat is thus crucially dependent on
the orientation behaviour of the filaments under the effects of both shear and gravity.
Finally, § 6 presents a summary of the results obtained. In the Appendix, we show
that the results of Khayat & Cox (1989) for the inertially induced orientational drift
of a sedimenting fibre can be reproduced using the approach adopted in the present
study.

2. The Generalized Reciprocal theorem and its application to a fibre in simple
shear flow

The reciprocal theorem for finite Re (see Lovalventi & Brady 1993) is given by∫
S

n · σ ′ · ũ dS + Re

∫
V

f ′ · ũ dV =

∫
S

n · σ̃ · u′ dS, (2.1)

where S represents all bounding surfaces (including possibly that at infinity, S∞) and
n denotes the unit normal directed from S into the fluid volume V . The set (u′, σ ′, f ′)
corresponds to the given torque-free fibre in simple shear flow, where the position r ,
velocity u′ and stress tensor σ ′ have been scaled in the usual manner by l, γ̇ l and
µγ̇ , respectively. The set (ũ, σ̃ ) represents the solution of an appropriately chosen
Stokes flow problem. The primes here are used to denote the disturbance quantities;
for instance, u′ is the disturbance velocity field defined as u′ = u − Γ · r , Γ = exey

being the transpose of the velocity gradient tensor in simple shear flow, where x, y

and z correspond to the flow, velocity gradient and vorticity directions, respectively.
The inertial terms in the Navier–Stokes equations are denoted by f ′, given by

f ′ =
∂u′

∂t
+ Γ · u′ + (Γ · r) · ∇r u′ + u′ · ∇r u′. (2.2)

We choose (ũ, σ̃ ) to correspond to the Stokes flow problem of the same fibre
rotating in an otherwise quiescent fluid. For an angular velocity Ω̃ , ũ is then given by

ũ =

∫ 1

−1

G0(r − s p) · f̃ (s p) ds, (2.3)
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where p is a unit vector along the fibre axis, G0 is the Oseen tensor given by

G0(r) =
1

8π

(
I

r
+

r r
r3

)
, (2.4)

and f̃ , the force per unit length exerted on the fluid by the rotating fibre, is

f̃ ( ps) =
4π

ln κ
(Ω̃ ∧ p)s, (2.5)

where, in the limit of a slender fibre, ln κ � 1. It is to be noted that the above expression
for ũ, and the ones below that use (2.3), treat the fibre as a line distribution of forces,
the magnitude of the force distribution being correct to O(1/ ln κ); higher-order
terms of O(1/(ln κ)2) are neglected. This approximation remains consistent provided
the dominant contributions to the inertial torque do not arise from a region of O(d)
around the fibre. In § 3.1 below, it is shown that the leading-order inertial contribution,
in fact, stems from a region surrounding the fibre of order its own length, thereby
validating the use of (2.3) and other similar approximations below.

The O(1/r2) far-field decay of the velocity disturbances u′ and ũ now implies that
the integrals over S∞ may be neglected, and the surface S in the integrals in (2.1)
then reduces to that of the fibre (Sf ). Using the no-slip boundary conditions for the
respective velocity fields on the fibre, the surface integrals reduce to

∫
Sf

n · σ̃ · u′ dS = Ωp · L̃ + (Γ · p) ·
∫ 1

−1

f̃ (s p)s ds, (2.6)∫
Sf

n · σ ′ · ũ dS =

∫
Sf

n · (σ − σ ∞) · ũ dS (2.7)

= Ω̃ · L′. (2.8)

Here σ ∞ is the stress field in the ambient simple shear flow, L̃ is the torque on the
fibre rotating in a quiescent fluid, and L′ is the torque arising due to the fibre velocity
disturbance in simple shear flow. The surface integrals above have been reduced to
line integrals over the axial coordinate s by integrating over the fibre circumference.
The expressions for the velocity and force fields, namely (2.3) and (2.5), are obtained
using slender-body theory, and are accurate to O(1/ ln κ). The inertia of the fibre
itself, and the resulting angular acceleration contribute terms that are algebraically
small, being only O(κ−2) relative to fluid inertial forces, and may again be neglected.
Thus, L′ is zero for a freely rotating fibre, and the resulting angular velocity of the
torque-free fibre in simple shear flow, Ωp , is given by

(Ω̃ ∧ p) · (Ωp ∧ p − Γ · p) =
3 Re(ln κ)

8π

∫
V

f ′(r) · ũ(r) dr, (2.9)

where we have used the expression for L̃ obtained from integrating the
(antisymmetric) first moment of the force density in (2.5). The volume integral on
the right-hand side represents the correction to the fibre rotation rate on account of
fluid inertial effects.



388 G. Subramanian and D. L. Koch

3. Fibre trajectories for small but finite inertia
3.1. Trajectory analysis for Re � 1

3.1.1. Derivation of fibre orbit equations

For small but finite Re the Stokes equations do not provide a uniform
approximation for the velocity disturbance field due to a particle in an unbounded
domain. The algebraic decay of the leading-order Stokes disturbance field ensures that
convection of momentum dominates viscous diffusion beyond an inertial screening
length that for simple shear scales as lRe−1/2 – the Saffman length (see Saffman
1965). In the limit Re � 1, it is easily shown that the dominant contribution to the
volume integral in (2.9) still comes from a region r ∼ O(1) around the fibre. The
contributions from both the inner region (r ∼ κ−1) where the velocity field behaves
logarithmically, and the Oseen region (r � Re−1/2), are asymptotically small, the latter
being O(Re3/2) (also see § 4). In fact, the contribution from the inner region, r ∼ κ−1,
scales as O(Reκ−1(ln κ)−1), and therefore may be neglected even for O(1) Re so long
as κ � 1. Thus, the O(Re) contribution to the angular velocity of the fibre is regular,
and requires only using the Stokes velocity disturbance due to a torque-free fibre in
simple shear flow in the expression (2.2) for f ′. The Stokes field being only O(1/ ln κ)
for a slender fibre, the nonlinear term in (2.2) is O(1/ ln κ)2 and may be neglected. In
addition, neglect of the inner region implies that the fibre can now be treated as a line
distribution of forces for the purposes of evaluating the volume integral in (2.9). It
then becomes more convenient to work in Fourier space, and to this end, the Fourier
transform is introduced:

ĝ(k) =

∫
dr e−i2πk · rg(r), (3.1)

g(r) =

∫
dk ei2πk · r ĝ(k). (3.2)

In transform variables, using the convolution theorem, the volume integral becomes

∫
f ′(r) · û(r) dr =

∫
f̂

′
(−k) · ˆ̃u(k) dk (3.3)

=

∫ [
∂ û′

∂t
(−k) + Γ · û′(−k) − (Γ † · k) · ∇kû′(−k)

]
· ˆ̃u(k) dk. (3.4)

We use the following expressions for the Stokes velocity fields û′ and ˆ̃u in reciprocal
space (for instance, see Rahnama et al. 1993):

û′(k) =
i

2(ln κ)
( p · E · p)j1(2πk · p)Ĝ0(k) · p, (3.5)

ˆ̃u(k) = − i

ln κ
j1(2πk · p)(Ω̂ ∧ p) · Ĝ0(k), (3.6)

where E is the rate of strain tensor, j1(z) is the spherical Bessel function of first order,
and

Ĝ0(k) =
1

(2π)2

(
I
k2

− kk
k4

)
, (3.7)
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is the Fourier transform of the Oseen tensor G0(r). Substituting (3.5) and (3.6) in

(3.4), and noting that the relation (2.9) holds for an arbitrary Ω̂ , one finally obtains

ṗ = Ωp ∧ p = Γ · p +
3Re

16π(ln κ)
[( p · E · p)(J1 + J2) − J3], (3.8)

where

J1 = p ·
∫

Ĝ0(k) · Γ † · Ĝ0(k) j 2
1 (2πk · p) dk, (3.9)

J2 =

∫
k · Γ · ∂

∂k
(j1(2πk · p)) Ĝ0(k) · Ĝ0(k) · p j1(2πk · p) dk

+

∫
k · Γ · ∂

∂k
(Ĝ0(k) · p) · Ĝ0(k) j 2

1 (2πk · p) dk, (3.10)

J3 =

∫
Ĝ0(k) · ∂

∂t
(( p · E · p)j1(2πk · p) p) · Ĝ0(k)j1(2πk · p) dk. (3.11)

The integral J3 arises due to the motion of the fibre, namely its changing orientation
( p(t)), relative to the stationary (inertial) reference frame, leading to an unsteady
disturbance velocity field in the Eulerian sense.

Before carrying out the detailed calculation of the integrals (3.9)–(3.11), we
anticipate, using tensorial arguments, the general form for the leading-order inertial
correction to the rate of change of fibre orientation. In the Stokes limit a fibre rotates
as a material line element, leading to the Jeffery orbit equation:

ṗjeff = Γ · p − (E : p p) p, (3.12)

which is linear in the shear rate. Since the first effects of inertia may, in principle,
be arrived at using a regular perturbation expansion, the leading inertial term will
be O(Re) and a quadratic function of E and/or Ω , Ω = (Γ − Γ †) here being the
vorticity tensor. The general form for such a term, excluding contributions arising
from solid-body rotation, is given as

(pcorr)i = α1 EijΩjkpk + α2 ΩijEjkpk + α3 EijEjkpk

+α4 (Eklpkpl)Ωijpj + α5 (Eklpkpl)Eijpj , (3.13)

where the αi are proportionality constants. Purely axial contributions of the form
c p, c being a scalar, must be added in order for the fibre to be inextensible, i.e. for
( ṗjeff + Re ṗcorr) · p =0 to be satisfied; they do not lead to a change in orientation,
however, and are therefore not included in (3.13). For a general linear flow, one can
always choose a fibre-aligned orthogonal coordinate system (see figure 1) with the
1-direction along the fibre axis p, and the 3-direction perpendicular to the vorticity
vector (ω). Thus, 13 is directed along ω ∧ p; for simple shear, this constrains it to lie
in the flow–gradient (XY ) plane. With this system of axes, elements such as Ω23, E23

etc. are seen to drive fluid motion in a plane transverse to the fibre axis, leading to
velocity disturbance fields that scale with the fibre diameter rather than its length, and
are therefore not relevant in the slender-body approximation. With this restriction,
α1 =α2 = α3 = 0. Finally, noting that Ω21 = ω3 = 0, the components of the drift in the
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Figure 1. Coordinate system used for calculation of fibre drift in simple shear flow.

2- and 3-directions reduce to

(ṗ2)corr = α5 E11E12,

(ṗ3)corr = E11

(
α5 + α4

2
Γ31 +

α5 − α4

2
Γ13

)
.


 (3.14)

The analysis that follows serves to determine the numerical value of the constants α4

and α5 in (3.14). We note that the coefficients of the three terms in (3.14) involve only
two independent constants α4 and α5, a fact that is borne out by the detailed form of
the orbit equations derived below (see (3.20)).

In order to evaluate the J i , we employ the fibre-aligned Cartesian coordinate system
described above. The fibre orientation, relative to the original system of axes (XYZ),
is itself specified by angles θ and φ, where θ is the polar angle between the fibre axis
and the vorticity direction, and φ is the dihedral angle between the gradient–vorticity
and the fibre–vorticity planes. The above integrals can then be written in the following
form:

(J1)i =
4

π2

∫ [
Γi1

k4
− (Γijkjk1 + Γj1kikj )

k6
+

(Ejkkjkk)kik1

k8

]
j 2
1 (2πk1) dk, (3.15)

(J2)i =
2

π2

∫ (
δi1

k4
− kik1

k6

)
Γjkkj

∂

∂kk

{
j 2
1 (2πk1)

}
dk

+
4

π2

∫
kjΓjk

[
− (2δi1kk + δikk1)

k6
+

3kikkk1

k8

]
j 2
1 (2πk1) dk, (3.16)

(J3)i =
8

π2
Ej1ṗj

∫ (
δi1

k4
− kik1

k6

)
j 2
1 (2πk1) dk +

4

π2
E11ṗj

∫ (
δij

k4
− kikj

k6

)
j 2
1 (2πk1) dk

+
8

π
E11ṗm

∫
km

(
δi1

k4
− k1ki

k6

){
j1(2πk1)

2πk1

− j2(2πk1)

}
j1(2πk1) dk, (3.17)
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where the velocity gradient tensor in the fibre-aligned coordinate system is given by

Γ = 1x1y,

= sin2 θ cos φ sin φ1111 + sin θ cos θ sin φ cos φ(1112 + 1211)

− sin θ sin2 φ1311 + sin θ cos2 φ1113 + cos θ cos2 φ1213

− cos θ sin2 φ1312 + cos2 θ sin φ cos φ1212 − sin φ cos φ1313. (3.18)

In order to evaluate the leading-order inertial correction, it suffices to use the Stokes
expression for ṗ in J3, namely (3.12), this being equivalent to regarding the Eulerian
acceleration of the velocity field (∂u/∂t) as arising from the rotation of the slender
fibre as if it were a fluid line element. Carrying out the integrations analytically in
Fourier space, the following equations characterize the fibre orbits to O(Re) in the
limit of large aspect ratio:

ṗ2 = E12 +
28πRe

15 ln κ
E11,

ṗ3 = Γ31 +
Re

ln κ
E11

(
4π

3
Γ31 +

8π

15
Γ13

)
,


 (3.19)

where we have written down only the ‘2’ and ‘3’ components of (3.8) since the
component in the ‘1’-direction merely serves to satisfy the inextensibility constraint.
Using (3.18) for the components of Γ and E, one then obtains

ṗ2 = θ̇ = sin θ cos θ sin φ cos φ

(
1 +

28πRe

15 ln κ
sin2 θ sin φ cos φ

)
,

ṗ3

sin θ
= φ̇ = − sin2 φ − Re

ln κ
sin θ sin φ cos φ

(
4π

3
sin θ sin2 φ − 8π

15
sin θ cos2 φ

)
.




(3.20)

3.1.2. Analysis of the fibre orbit equations

The structure of the orbit equations (3.20) resembles that of similar equations
derived for the motion of a torque-free fibre in the shearing flow of a second-order
fluid (see Leal 1975). The inertial terms in (3.20) are, in fact, identical in form to the
non-Newtonian correction terms found by Leal, except for the opposing signs. It was
shown earlier in this section, using general continuum mechanics arguments, that this
similarity arises because terms representing the first effects of inertia and elasticity in
simple shear flow are both quadratic functions of E and Ω , and reduce to the same
tensorial form in the slender-body limit. The resulting alteration of the fibre motion
due to fluid inertia for small Re is thus qualitatively similar to that induced by weak
elasticity but opposite in sense.

For Re = 0, the system (3.20) can be integrated to obtain

cotφ = t, tan θ = C/ sinφ, (3.21)

showing that the slender-fibre trajectories, at leading order, are identical to those of a
fluid line element in simple shear flow when projected onto the unit sphere. As shown
in figure 2, they coincide with the meridians of the unit sphere with the flow direction
as its polar axis. Here, C is the orbit constant; C = ∞ represents motion in the flow–
gradient plane, while C =0 corresponds to the degenerate set of fibre orientations
in the flow–vorticity plane. Note that neglect of the finite thickness of the fibre, and
thence the O(κ−2) torque responsible for fibre rotation through the flow-aligned state
(see discussion below), leads to trajectories that are no longer closed orbits; in fact,
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Meridional trajectories

Figure 2. The meridional trajectories of a line element (slender fibre) in simple shear flow.
The flow–vorticity plane comprises a degenerate set of stationary fibre orientations.

for almost all initial orientations, the slender fibre eventually aligns itself with the
flow axis.

For small but finite Re, it is convenient to recast (3.20) in terms of the natural
(C, τ ) coordinate system (see Leal & Hinch 1971), τ = cotφ being the orbit phase;
one obtains

dτ

dt
= 1 +

πRe

ln κ

sin2 θ cos φ

sin φ

(
4

3
sin2 φ − 8

15
cos2 φ

)
, (3.22)

dC

dt
=

[
8πRe

15 ln κ
sin2 θ cos2 φ

]
C. (3.23)

From (3.23), evidently C → ∞ as t → ∞, and thus, the first effect of fluid inertia is
to induce an O(Re) drift that, in the slender-body approximation, drives the fibre
towards the flow–gradient plane.

We now examine the system (3.20) in more detail. Figure 3(a) shows both the
inertialess and O(Re) modified trajectories on a (small) portion of the unit sphere
surrounding the flow axis, i.e. for (θ, φ) ≈ (π/2, 0). Locally, the surface of the unit
sphere may then be replaced by its tangent plane – the (y, z)-plane in this case, with
y(≈ φ) and z(≈ π/2 − θ) being the local coordinates in the gradient and vorticity
directions, respectively, and the origin corresponding to the intersection of the unit
sphere with the flow direction. For zero inertia, the orbit equations on this tangent
plane reduce to the following approximate form:

dy

dt
≈ −y2, (3.24)

dz

dt
≈ −yz. (3.25)

The z-axis (the flow–vorticity plane) represents a continuum of fixed points for
the above system. Solving (3.25), one obtains dy/dz = y/z; the resulting trajectories,
depicted by dashed lines in the figure, are locally radial, with the trajectories for y > 0
asymptotically approaching the origin, and those with y < 0 diverging from it. This
is, of course, consistent with the meridional nature of the inertialess fibre trajectories
seen above. For small but finite Re, the local representation of the orbit equations is
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Figure 3. (a) The modified inertial trajectories (solid lines) of a slender fibre in simple shear
flow on a magnified section of the unit sphere, when viewed along the flow direction. For
comparison, the inertialess trajectories are shown by dashed lines. The latter, being of a
meridional character, are radial in this viewpoint, converging toward the intersection of the
unit sphere with the flow axis. The inertial trajectories cross successive meridians, eventually
asymptoting to y = (8π/15)Re/ ln κ on the flow–gradient plane. (b) Modified inertial trajectories
for a fibre of finite aspect ratio, again viewed along the flow axis. The inertialess trajectories,
again depicted by dashed lines, are now closed orbits that cross the flow–vorticity plane; the
inertial trajectories are again seen to cross Jeffery orbits en-route to the flow–gradient plane.

given by

dy

dt
≈ −y2 +

(
8π

15

)(
Re

ln κ

)
y, (3.26)

dz

dt
≈ −yz, (3.27)
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at leading order. Thus, in addition to the z-axis, the system (3.27) now has a fixed
point at (y, z) ≡ [(8π/15)Re/ ln κ, 0]; this point corresponds to the fibre orientation
(θ, φ) = [π/2, (8π/15)Re/ ln κ +o(Re)] for the full system (3.20). It is easily shown that
the fixed points on the z-axis are all unstable; for instance, the y-axis is an unstable
manifold for the origin. On the other hand, [(8π/15)Re, 0] represents a stable fixed
point. The resulting inertial trajectories are also depicted in figure 3(a) by solid
lines. Each inertial path is seen to cross successive inertialess meridional trajectories
(dashed lines), finally approaching the fixed point [(8π/15)Re, 0] in a direction tangent
to the flow–gradient plane. The configuration of trajectories in a region close to the
other pole (θ, φ → π/2, π) of the unit sphere is obtained by reflection of the depicted
trajectory topology with respect to the flow–vorticity plane, as is required by the
antisymmetry of simple shear. For finite Re, almost all initial orientations eventually
approach the flow–gradient plane at an inclination of φ ≈ (8π/15)Re/ ln κ .

Equations (3.20) govern the trajectories of a slender fibre only in the limit of
infinite aspect ratio. Since a flow-aligned fibre does not rotate in this limit, the inertial
torque in (3.20) always dominates for small enough φ, leading to the aforementioned
stationary orientation in the flow–gradient plane. However, an inertialess fibre with
a large but finite aspect ratio experiences a small O(κ−2) torque even in the flow-
aligned position, and thus rotates in a closed (Jeffery) orbit, spending only an O(1/κ)
fraction of the time in orientations with φ > 1/κ .† In order to achieve this periodic
flipping exhibited by actual fibres, one must incorporate the O(κ−2) angular velocity
arising from the finite fibre diameter in the equation for φ̇ in (3.20). One of the
consequences of including the aforementioned correction is that, for small enough
Re, the fibre continues to rotate across the flow–vorticity plane, and a stationary
orientation does not arise until a certain critical Reynolds number that is calculated
below; the equation for φ̇ now takes the form

φ̇ =
−1(

κ2
e + 1

)(
κ2

e sin2 φ + cos2 φ
)

− Re

ln κ
sin θ sin φ cos φ

(
4π

3
sin θ sin2 φ − 8π

15
sin θ cos2 φ

)
. (3.28)

Note that the equation for θ̇ in (3.20) still remains unaltered at leading order
for large κ . The orbit constant, now defined for a finite aspect ratio, is
C = tan θ sin φ(1 + κ−2

e cot2 φ)1/2, with C =0 corresponding uniquely to the vorticity
axis. Here, and in (3.28), κe = βκ is an equivalent aspect ratio, the proportionality
factor β being only a weak function of κ (see Cox 1971); experiments with rod-like
particles with aspect ratios in the range 10–100 have shown β to be close to 0.7
(Anczurowski & Mason 1967). Thus, with the above modification, the inertialess
meridional trajectories become closed Jeffery orbits, and the O(Re) crossing of
meridians seen earlier translates to migration across Jeffery orbits with increasing
orbit constants towards an eventual tumbling motion in the flow–gradient plane.
Figure 3(b) shows these spiralling trajectories when viewed along the flow axis, and

† This O(κ−2) torque is related to the finite fibre diameter and cannot be obtained by regarding
the fibre as a line distribution of forces, as was assumed earlier. The latter distribution is, in fact,
identically zero to all orders in (ln κ)−1 for the flow-aligned orientation. A fibre in this orientation
acts, at leading order, as a distribution of force-doublets, leading to a torque that is algebraically
smaller, being of O(κ−2); for blunt-edged bodies, the contribution to this torque comes from the
blunt ends, and thereby precluding the use of slender-body theory (see Cox 1971).
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Figure 4. (a) The Jeffery orbits of a finite-aspect-ratio fibre when projected onto the
flow–gradient plane. The O(Re) corrected behaviour of the trajectories: inertial trajectories
spiral out crossing successive Jeffery orbits (dotted lines) approaching the stable limit cycle in
the shearing plane.

may be contrasted with the trajectory configuration in the limit of infinite aspect ratio
illustrated in figure 3(a). For Re small enough, the surface of the unit sphere thus
transforms from a structurally unstable centre manifold at Re =0 to a structurally
stable combination of an attracting limit cycle (the flow–gradient plane) and a pair of
spiral repellors (the intersections of the vorticity axis with the unit sphere) for small
but finite Re (see figure 4).

The evolution of the orbit constant calculated using (3.28) is shown in figure 5,
where we have plotted the ratio C/(C + 1) as a function of time for a fibre aspect
ratio κ = 20, and for Re = 0.05. The dominant changes are seen to occur in the nearly
aligned phases of the Jeffery orbits, with φ near nπ, where the fibre spends the most
time, and for which case the inertial drift in (3.23) attains its maximum value. The
otherwise monotonic increase in C/(C +1) is modulated by a secondary wiggle on the
scale of a Jeffery period, leading to a pair of short plateaus in a π interval of φ. One
of these plateaus, the shorter one, arises because the orbit constant remains virtually
unchanged during the O(γ̇ −1) time the fibre takes to rotate through orientations
with | φ |, | π − φ | � O(1/κ). As the fibre approaches flow alignment, i.e. when
0 < φ < O(1/κ) or π < φ < π + O(1/κ), the orbit constant starts to increase and the
increase continues for a time of O(κγ̇ −1) until the inertial angular velocity in (3.28)
becomes much smaller than the O(κ−2) contribution associated with the finite fibre
diameter. The fibre then rotates through the aligned position in a time of O(κγ̇ −1),
again with little change in the orbit constant, leading to the second, longer, plateau.
This is followed by a second long O(κγ̇ −1) period of increase as the fibre rotates out
of alignment. The change in the sign of the inertial angular velocity across the flow
axis implies that the magnitudes of increase in the orbit constant in these intervals
differ for any finite Re.

From (3.28), it is easily seen that the inertial correction vanishes at
φc ∼ tan−1[±(2/5)1/2], the fibre in this orientation rotating with an angular velocity
identical to its inertialess value. For φc <φ < π/2, the fibre rotates faster than at
Re =0, whereas it is decelerated by inertial forces in the region 0 <φ <φc. As a
result, a fibre at finite Re rotates into the flow-aligned state (φ = 0) slower than at
Re =0, but moves out of alignment slightly faster. Since the O(Re) inertial torque
opposes the (small) leading-order Jeffery rotation for a fibre moving into alignment,
the possibility of a ‘non-rotating’ mode arises (by ‘non-rotating’, here, we mean that
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Figure 5. The ratio C/(C + 1), C being the orbit constant as a function of time (scaled with
the shear rate), for Re = 0.05 and a fibre aspect ratio of 20.

the fibre no longer undergoes Jeffery-like rotations with φ being a periodic function
of time; both values of θ and φ continue to change as the fibre asymptotes towards a
fixed orientation in the shearing plane). With Re � 1 the orientation of this stationary
state, as seen in the flow–gradient plane, may be determined from the limiting form
of (3.28) for φ → 0:

φ̇ = −φ2 − 1

β2κ2
+

8πRe

15 ln κ
(sin2 θ) φ. (3.29)

Equating φ̇ to zero leads to a quadratic equation for φ, only one of whose roots yields
a stable fixed point. The stable fixed point reduces to φ = (8π/15)Re/ ln κ , and the
unstable one to the flow–vorticity plane, for an infinitely thin fibre, this then being
consistent with the behaviour predicted by (3.20). Solving (3.29), the stable orientation
for a finite-aspect-ratio fibre is given by

φf =
4πRe

15 ln κ
sin2 θ +

{
16π2Re2

225(ln κ)2
sin4 θ − 1

β2κ2

}1/2

. (3.30)

This stationary orientation is physically realizable when (3.30) is real valued, that is,
provided Re >Rec with

Rec = (15/4π)(ln κ/βκ) sin−2 θ, (3.31)
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this being a fairly modest value for sufficiently large-aspect-ratio fibres. For Re not
much larger than the critical value, φf ∼ O(κ−1).

From the expression for Rec it is seen that the critical shear rate increases with
decreasing θ . A fibre that first becomes stationary at a given shear rate, and for a
specific value of θ , will therefore drift towards the plane of shear without further
rotation, the increase in θ accompanying this drift ensuring that the stationary states
en-route remain physically realizable. This is in contrast to Leal’s predictions for fibre
motion in a second-order fluid (see Leal 1975). In this latter case, the domain of
stationary states for any finite shear rate does not include the vorticity axis, and thus,
the eventual approach towards vorticity alignment is always via a spiralling trajectory,
a behaviour supported by experiments (see Bartram, Goldsmith & Mason 1975). Our
analysis is consistent, at least in part, with earlier experiments by Karnis, Goldsmith &
Mason (1966) who investigated the orientational behaviour of rods and disks in
Poiseuille and Couette flow in the presence of inertial effects. In particular, they found
neutrally buoyant rods in the latter to steadily drift over many rotations, eventually
tending toward the C = ∞ orbit in the shearing plane. The highest shear rate used
in the experiments was 11.6 s−1 for a system of aluminium-coated Nylon rods with
aspect ratio κ ∼ 10 in a fluid mixture with ρ = 1.09 g cm−3 and µ = 1.2 P. The Reynolds
number for this system is around 0.1, while the critical value for the existence of a
non-rotating mode is found to be approximately 0.35, using (3.31) and taking β to
be around 0.8 (as also found by the above authors). Thus, the experimental findings
agree with the predicted drift towards the plane of shear for Re <Rec. Verification
of the predictions for Re > Rec would require experiments at higher shear rates, and
possibly in a less viscous fluid. Visualization experiments carried out in rheological
apparatus, in this latter regime, must be performed with care to ensure that secondary
flow effects remain minimal with increasing shear rate.

3.2. Physical mechanism for fibre drift

We now examine the physical origin of the changes in orbit constant and phase, first
noting that the unsteadiness of the disturbance velocity field (∂u′/∂t) is not essential
to the governing physics of the orbital drift. This may be seen, in part, from (3.23) and
(3.22) wherein the inertial corrections attain their greatest values with the fibre nearly
aligned with the flow direction, when its angular velocity is the smallest. Unsteady
effects are evidently minimized in such a case. More fundamentally, the symmetry
of the leading-order quasi-steady disturbance velocity field about the fibre-flow plane
implies that Eulerian unsteadiness by itself, while affecting the orbit phase (and thus,
the precise value of φc), will not induce a motion orthogonal to the fibre-flow plane,
leaving the orbit constant unchanged in the slender-body limit. We therefore base our
physical arguments on the quasi-steady disturbance velocity field.

The instantaneous streamlines in the fibre-flow plane (ψ = constant) for fluid motion
around the slender fibre are shown in Figs 6 and 7. In figure 6 where φ <φc < π/2,
the perturbed streamlines meet the fibre at right angles to its length, satisfying
the boundary condition of solid-body rotation; the directions of the inertial forces
(∝ u · ∇u) resulting from the streamline curvature are indicated by the little arrows.
The tighter spacing of streamlines on the side where the fibre makes an acute angle
with the flow axis implies an acceleration of the fluid here relative to the obtuse-
angled region, so the corresponding point forces are greater in magnitude, indicated
by longer arrows in the figure. The heavy curved arrows represent the sense of the net
torque that arises. This torque, projected onto the flow–gradient plane, is consistent
with the inertial modification of orbit phase in the region φc <φ < π/2 discussed
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Figure 6. (a) The boxed figure depicts the fibre-flow plane and the dihedral angle ψ it makes
with the plane of shear. The disturbance velocity field of the fibre in the fibre-flow plane is
shown on (b) for an orientation with φ >φc . (c) The resulting streamlines, again in this plane,
and the resulting array of inertial point forces. The sense of the net inertial torque is shown
by the two curved arrows.

above. For an orientation that is a mirror image with respect to the gradient axis
(i.e. π/2 <φ < π − φc), the fibre is in the compressional quadrant of simple shear, the
disturbance velocity field now changing character from biaxial to uniaxial extension
along the fibre; the regions of acceleration and deceleration, being decided by the
angle between the fibre and the flow axis, are now interchanged leading to a torque
in the opposite sense. In figure 7 the fibre is shown immediately prior to crossing
the flow axis. The forces induced on the fibre on account of its inextensibility, in
this nearly aligned orientation, lead to a velocity field that accelerates the fluid in
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Figure 7. As figure 6 but for an orientation with φ → 0.

regions corresponding to φ ∼ 0− and φ ∼ π−, in turn leading to a torque that retards
alignment. This retardation is again in agreement with the analysis in the preceding
paragraphs, and is responsible for the emergence of a stationary state for Re > Rec.

To analyse the change in orbit constant due to migration across inertialess
meridional trajectories, it is necessary to consider fluid motion induced orthogonal to
the fibre-flow plane. For purposes of the following qualitative reasoning, that serves
to determine the direction of the O(Re) drift, the fibre may be treated as a dumbbell
comprising a pair of oppositely directed point forces, proportional to the local slip
velocity, and displaced from one another by a distance of O(l) (see figure 8). The
similarity of a fibre and a dumbbell at low Re can, in fact, be made quantitative.
An analysis for a torque-free dumbbell in simple shear is virtually identical to the
one carried out above, the only difference being that the spherical Bessel function
corresponding to the fibre forcing in Fourier space is now replaced by an elementary
sine function. It yields orbit equations of the same form, differing only in the values of
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Figure 8. The induced velocity disturbance due to the dumbbell in simple shear flow. The two
insets show the directions of the inertial lift forces acting on one of the point forces comprising
the dumbbell on account of streamline curvature.

the numerical constants. Thus the aforementioned conclusions with regard to change
in both orbit constant and phase remain unchanged for a dumbbell in the limit
Re � 1. This analogy of a fibre with a dumbbell is, of course, valid with regard to
the nature of the respective disturbance velocity fields at distances of order O(l) or
greater. The near-field behaviour of the velocity fields, i.e. for distances r � l from
the point forces of the dumbbell or for r ∼ O(d) from the fibre axis, is very different;
that for a fibre is logarithmic, characteristic of Stokes flow in two dimensions, while
that close to the individual point forces in the dumbbell diverges as 1/r . In either
case, however, the near-field contributions to the inertial torque are negligibly small,
and are therefore not relevant to the argument that follows. Returning to figure 8,
we first observe that owing to the antisymmetry of simple shear, the sense of the
inertial couple can be deduced by considering the nature of the perturbed streamlines
around only one of the two point forces. Further, as shown in figure 8, it suffices
to consider the component of the point force in the flow direction, the effect of
the gradient component being restricted to the fibre-flow plane. The flow component
accelerates the ambient simple shear on one side relative to the other, leading to curved
streamlines of the form shown in the inset. The nature of curvature clearly points to a
resultant lift force in the positive gradient direction. The component of this lift force
perpendicular to the fibre-flow plane, together with its antisymmetric counterpart,
constitute the inertial couple. For an orientation that is a mirror image with respect
to the gradient-vorticity plane, the forces exerted by the dumbbell reverse direction,
the fibre being in the compressional quadrant. The direction of the inertial lift forces,
and sense of the resulting couple, remain unchanged. The O(Re) component of θ̇

therefore has the same (positive) sign in the quadrants φ ∈ (π/2, π) and φ ∈ (0, π/2),
while that of φ̇ reverses sign from being negative for φ close to π/2 to being positive
for small φ or (π − φ). Both of these are consistent with migration towards the
flow–gradient plane (θ = π/2).
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4. Comparison with previous work
It was seen in the previous section that the motion of a fibre and a dumbbell

are qualitatively similar in the limit of small Re. Harper & Chang (1968) analysed
the motion of a dumbbell shaped particle in simple shear in the limit when the
separation l of the spheres comprising the dumbbell is much greater than the inertial
screening length (ν/γ̇ )1/2, i.e. when Re as defined above is asymptotically large. An
O(ε2Re1/2) torque, assumed to result from Saffman-like lift forces (see Saffman 1965
and below) acting independently on the individual spheres, was found to move the
dumbbell towards the plane of shear; ε = a/l is the ratio of the sphere radii to their
separation. Re-examining the physical situation as well as the assumptions underlying
this analysis reveals, however, inconsistencies that severely restrict its applicability.

In order to determine the precise regime of validity for Harper & Chang’s prediction,
it is necessary to consider Saffman’s original work, wherein he obtained an expression
for the inertial lift on a sphere moving in simple shear, with a slip velocity U

directed along the ambient streamlines, under the assumption U � (νγ̇ )1/2. For a
freely rotating dumbbell of length l, the slip velocity of the spheres is O(γ̇ l) for
orientations not too close to either the gradient axis or the flow–vorticity plane.
The equivalent assumption for either sphere in the dumbbell would be γ̇ l � (νγ̇ )1/2

or Re � 1, in direct contradiction to the intended limit. Indeed, on length scales of
O(ν/γ̇ )1/2, where the lift force originates, the dumbbell acts as a force-dipole rather
than a point force (as in Saffman’s analysis), and the corresponding contribution
from this Oseen region is weaker, being only O(Re3/2) (see § 3.1). Therefore, deriving
a lift force on one sphere under Saffman’s original assumption, while neglecting the
other, is clearly incorrect. For orientations nearly aligned with the flow–vorticity
plane, however, the slip velocity V ∼ O(γ̇ lφ), so that a necessary condition for the
validity of the Harper & Chang analysis is φ � Re−1/2.† In the limit l � (ν/γ̇ )1/2,
the velocity disturbance due to the individual spheres decays rapidly everywhere
beyond the (small) inertial screening length, except in the wake. Since their analysis
assumes that the two spheres do not interact hydrodynamically, we further require
that one sphere not be in the wake of the other. The wake region in simple shear
has an antisymmetric structure as shown in figure 9 and grows like (νx/γ̇ )1/3, thereby
excluding orientations in the flow–vorticity plane close to the flow axis. The final
domain of validity is found to be φ � Re−1/2, π/2 − θ � Re−1/3, the latter restriction
precluding the region π/2− θ ∼ O(a/l) where most Jeffery orbits with orbit constants
C � O(1) cross the flow–vorticity plane.

It is worth emphasizing that the underlying physical mechanisms for the fibre
drift toward the flow–gradient plane, even in the narrow angular range above, are
very different for Re � 1 and Re � 1. In the former case, as was shown in § 3, the
O(Re) migration results from inertial forces in the viscous-dominated region of O(l),
while lift forces comprising the inertial couple for Re � 1 have their origin in the
well-known inviscid mechanism operating in the region r � (ν/γ̇ )1/2. This fact is not
explicitly mentioned in the literature, and we therefore digress briefly to elaborate on
the lift-force scaling found by Saffman (1965). A particle of radius a, translating with
velocity U relative to a simple shear flow, in the limit Rea = a2γ̇ /ν � 1, ‘carries’ with

† The slip velocity is also vanishingly small for orientations close to the gradient-vorticity plane,
being of O[γ̇ l(π/2−φ)2]; Harper & Chang’s analysis is therefore also valid when (π/2−φ) � Re−1/4.
This regime is of little interest since the inertial corrections become significant only for nearly
flow-aligned orientations when the leading-order angular velocity is small.
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Figure 9. (a) The wake regions of the two spheres comprising the dumbbell, and the resulting
shielding effect. (b) The restricted regime of validity for Harper & Chang’s analysis; the only
overlap is with the vanishingly small region of Jeffery orbits with orbit constants C <O(1).

it a large fluid sphere of radius (ν/γ̇ )1/2, this being the extent of the inner Stokes
region where the velocity disturbance decays viscously, provided ν/U � (ν/γ̇ )1/2. The
Magnus lift force mechanism, originating in the outer region at length scales of
(ν/γ̇ )1/2 or greater, acts on this fluid sphere, endowing it with a transverse velocity of
O(U ). This transverse outer velocity field forces the first-order inertial correction in
the inner region. For a point force in simple shear, the latter is known to grow like
r with distance r away from the particle; the resulting magnitude of the transverse
velocity at the surface of the particle is therefore correspondingly smaller, being of
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O[(a2γ̇ /ν)1/2U ], in turn leading to a lift force of O(µaURe1/2
a ), identical to the original

result derived by Saffman.
Evidently, the case of a dumbbell in the limit Re � 1 is more complicated than

envisaged by Harper & Chang (1968).

5. Fibre rotation with both sedimentation and shear
Herein, we examine the motion of a slender fibre sedimenting with velocity U in

an ambient simple shear flow. As referred to in the introduction, the first effects of
inertia for both a sedimenting fibre and a neutrally buoyant fibre in simple shear
flow are, in principle, calculable from a regular perturbation of the governing Navier–
Stokes equations for small values of the appropriate Reynolds number – Resed = Ul/ν

for sedimentation and Re = γ̇ l2/ν for simple shear. Therefore, the inertial torque in
either case is due to stresses associated with the O(Resed) or O(Re) velocity field at
distances from the fibre of order its own length. The latter are obtained from solving
the inhomogeneous Stokes equations, valid in a region of O(l3) around the fibre,
the forcing term being the inertial acceleration, ResedDu0/Dt or ReDu0/Dt , arising
from the leading-order Stokes velocity disturbance in either case; it is noted that
Du0/Dt is not the same for the sedimentation and shear problems. However, that
the Stokes velocity fields in sedimentation and shear are, respectively, even and odd
functions of the displacement r from the fibre centre, together with the linearity of
the Stokes equations, implies that in the limit Resed, Re � 1, the leading-order inertial
modifications of fibre motion under the combined effects of sedimentation and shear
are given by superposition of the individual angular velocities.

When sedimenting in a quiescent fluid under the action of gravity, the velocity
of a fibre depends rather weakly on its orientation even at Resed =0, the maximum
deviation from the direction of gravity being approximately 19◦. Khayat & Cox
(1989) determined the inertial torque on a fibre translating with a fixed velocity,
and including the above orientation dependence of the actual settling velocity might
therefore seem a hindrance to analysing the dynamics of fibre motion. However, ṗsed

has the same functional form in terms of either the orientation-dependent settling
velocity U or the (constant) gravitational force Fg , and p, in the limit of small Resed.
This is seen from the fact that the inertial angular velocity in sedimentation being
a pseudovector and a quadratic function of U at leading order, must necessarily be
of the form (k/ν)( p · U)( p ∧ U), k being constant in the limit Resed � 1. Using the
expression

U =
d2∆ρg(ln κ)

8µ

[
p p + 1

2
(I − p p)

]
· 1g, (5.1)

for the Stokes settling velocity,† known from slender-body theory (see Cox 1970), one
obtains

Ω sed = k
U 2

2ν
( p · 1g)( p ∧ 1g), (5.2)

for the angular velocity, where U = d2∆ρg(ln κ)/8µ serves as the velocity scale for
sedimentation and may be used to define Resed. In turn, this yields the following

† The O(Resed) inertial correction to this velocity will only affect the angular velocity at O(Re2
sed).
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equation for the dimensional rate of change of fibre orientation:

ṗsed = − 5 U 2

16ν ln κ
(1g · p)(I − p p) · 1g. (5.3)

Here, the numerical value of k has been used from Khayat & Cox’s analysis (see
Khayat & Cox 1989; also see the Appendix). In (5.3) 1g denotes the unit vector in the
direction of gravity, and ∆ρ is the density difference driving sedimentation. Clearly,
accounting for the orientation dependence of the fibre settling velocity presents no
additional difficulty. We now proceed to investigate the three canonical instances
where 1g is directed along the flow, gradient and vorticity directions of simple shear.
The case of gravity aligned with the vorticity arises in a vertically aligned cylindrical
Couette cell. Gravity is aligned with the velocity gradient in a horizontal channel or
a parallel plate rheometer with a vertical axis, while gravity is parallel to the flow
direction in a vertical channel or pipe flow. With 1g aligned along the vorticity axis,
the inertial torque arising from sedimentation acts to move the fibre toward the plane
of shear, now also the transverse plane of stability for the sedimentation problem.
This enhances the orbital drift already present due to shear, the orbit phase τ , and
thence the value of Rec remaining unchanged. Thus, while for Re <Rec the fibre
tends towards a tumbling motion in the plane of shear, for Re � Rec the presence
of a shear acts to select a unique stable orientation from the otherwise degenerate
set in this transverse plane. This stable orientation makes an angle φf , given by
(3.30), with the flow direction. In the fibre-aligned coordinate system of § 3.1, the
dimensionless angular velocity on account of sedimentation is θ̇ sed = (ṗ2)sed/γ̇ with
1g ≡ 1z in (5.3), leading to the following modified equation for the change in orbit
constant:

dC

dt
=

[
8π

15

Re

ln κ
sin2 θ cos2 φ +

5

16

Re2
sed

Re ln κ

]
C. (5.4)

The time t above is scaled with the shear rate. The ratio of the respective time scales
of migration across a Jeffery orbit is given by

tsed

tshear

≈ 128π

75
sin2 θ

(
Re

Resed

)2

. (5.5)

Fibres translating perpendicular to a planar shear flow therefore exhibit the same
qualitative orientation distribution as neutrally buoyant fibres at comparable Re.

The directions of the inertial torques due to sedimentation and shear are shown
in figure 10 for 1g along the flow and gradient directions. The torques depicted
therein are for a nearly circular Jeffery orbit close to the plane of shear, and for
orientations approximately aligned with the flow direction, the latter because the
dominant inertial changes occur in the nearly aligned phases of a Jeffery orbit when
the angular velocity of the fibre becomes small. Clearly, for 1g in the flow direction,
the sense of the inertial torques arising from the sedimentation and shear mechanisms
is identical near the shearing plane. Thus, sufficiently large inertia will again lead to
a fixed point φf > 0, and the leading-order Jeffery torque then drives the stationary
fibre towards the plane of shear. The fibre motion therefore remains qualitatively
unaltered from that analysed in § 3 so long as the either Re or Resed is large enough
to allow for the existence of a stationary state. The details are, of course, different –
for instance, the critical Reynolds number would now be a decreasing function of
Resed. If Re and Resed are small enough to allow for fibre rotation, then sedimentation
along the flow axis leaves the orbit constant C unchanged! This is because, as
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Figure 10. The sense of the inertial torques arising due to sedimentation and shear for
tumbling motion in the plane of shear with 1g along the flow (a) and gradient (b) directions.

noted earlier, the Jeffery orbits in the limit of infinite aspect ratio are meridians
running between the points of intersection of the flow axis with the unit sphere. With
1g = 1x , the inertial drift due to sedimentation, being transversely isotropic about
the flow axis, is along the same meridians and therefore consistent with a constant
C. Thus, the drift in orbit constant remains identical to that in the presence of
shear alone (see (3.23)) with only a quantitative change in the dynamics of the orbit
phase.

We now look at the more interesting case of 1g aligned in the gradient direction.
With 1g = 1y , it may easily be shown using (3.20), (3.28) and (5.3) that the orbit
equations are given by

θ̇ = sin θ cos θ sin φ cosφ

(
1 +

28πRe

15 ln κ
sin2 θ sin φ cosφ

)
− 5

16 ln κ

Re2
sed

Re
sin2 φ sin θ cos θ,

φ̇ =
−1(

κ2
e + 1

) (
κ2

e sin2 φ + cos2 φ
)

− Re

ln κ
sin2 θ sin φ cosφ

(
4π

3
sin θ sin2 φ − 8π

15
sin θ cos2 φ

)

− 5

16 ln κ

Re2
sed

Re
sin φ cosφ,




(5.6)

where κe =βκ , as before, is the equivalent aspect ratio of the fibre. The evolution of
the orbit constant is governed by

dC

dt
=

(
8πRe

15 ln κ
sin2 θ cos2 φ − 5

16 ln κ

Re2
sed

Re

)
C, (5.7)

showing that for Resed however small, there always exists a finite section of the
unit sphere around the vorticity axis, starting in which a fibre will eventually spiral
towards the vorticity axis. In figure 11, with Re = 0.05 and Resed = 0.04, a couple of
fibre trajectories, in different regions of the unit sphere, exemplify this contrasting
behaviour. One of them starts off closer to the flow–gradient plane and spirals out
towards the flow–gradient plane, while the other, located very close to the vorticity
direction, drifts in the opposite direction. Provided Re and Resed are small enough
for the phase relationship to still be approximated by that along a Jeffery orbit, one
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Figure 11. The opposite senses of the spiralling trajectories depending on the region of the
unit sphere that they start from; here, Re = 0.05, Resed = 0.04 and κ = 20, and 1g is along the
gradient direction. In (a), the inertial torque due to shear is dominant, and the fibre spirals
out towards the plane of shear, while in (b) for a point sufficiently close to the vorticity axis,
the fibre drifts in the opposite direction due to the inertial torque arising from sedimentation.

may obtain an estimate of C for the orbit that separates the two basins of attraction
corresponding to the plane of shear and the vorticity axis, respectively. Since the
change of C over a 2π cycle is o(1), we have for the neutral orbit,∫ 2πκe

0

8πRe

15 ln κ
sin2 θ cos2 φ dt ≈ 5πκe

8 ln κ

Re2
sed

Re
, (5.8)
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which may be rewritten as

8πRe C2
n

15

∫ 2πκe

0

cot2 φ cos2 θ dt =
5πκeRe2

sed

8Re
, (5.9)

the subscript ‘n’ corresponding to the neutral orbit. Since a fibre in a Jeffery
orbit spends only an O(1/κe) fraction of a period away from orientations with
φ, π − φ >O(1/κe), the integral on the left-hand side may be approximated as
2πκ3

e cos2 θφ=0. The value of θ in the aligned phase may be related to the orbit

constant by θφ=0 = cos−1(1/
√

1 + C2
nκ

2
e ), whence one finally obtains

Cn =
1

βκ

√
128π

75

Re2

Re2
sed

− 1

. (5.10)

For Resed small, the fibre, for most initial orientations, still tends toward the plane
of shear. With increasing Resed the phase relationsip along an orbit changes and for
Resed sufficiently large, a fixed point arises that is now of an opposite sign when
compared to that found previously in presence of shear alone (see (3.30) in § 3.1).
This may be seen by considering the limiting form of the equation for φ̇ in (5.6) for
φ small, and with φ̇ set equal to zero. We have

0 = −φ2 − 1

β2κ2
+

[
8πRe

15 ln κ
sin2 θ − 5

16 ln κ

Re2
sed

Re

]
φ, (5.11)

so the fixed point is given by

φ′
f = −1

2

(
5

16 ln κ

Re2
sed

Re
− 8πRe

15 ln κ
sin2 θ

)

+
1

2

[(
5

16 ln κ

Re2
sed

Re
− 8πRe

15 ln κ
sin2 θ

)2

− 4

β2κ2

]1/2

(5.12)

which is negative provided

Re2
sed >

128π

75
Re2 sin2 θ. (5.13)

Thus, one again has a non-rotating mode that now monotonically tends towards the
vorticity axis. Unlike Leal’s observations for motion in a second-order fluid (see Leal
1975), however, the fibre will not start spiralling at any point en-route to the vorticity
axis.

For instances where Re is sufficiently large for the fixed point φf given by (3.30) to
exist even when Resed = 0, an increase in Resed would lead to an intermediate regime
where the two opposing inertial torques due to sedimentation and shear approximately
balance each other, leading once again to a spiralling behaviour toward the plane of
shear. Further increase in Resed leads to the stationary mode described above.

To summarize, the orientation behaviour of fibres settling in a shear flow depends
on the direction of sedimentation relative to the plane of shear. With gravity directed
along the flow and vorticity axes of a simple shear, settling fibres exhibit the same
qualitative orientation behaviour as neutrally buoyant fibres. The behaviour of fibres
settling in the gradient direction may, however, deviate significantly from quiescent
settling depending on the relative values of Re and Resed. For sufficiently large
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magnitude of the latter, the fixed point occurs with the fibre pointing upstream rather
than downstream, i.e. with φf , defined in § 3, being negative; the resulting drift, in
contrast to that seen for neutrally buoyant spheres, is towards the vorticity axis.

6. Conclusions
We have considered the first effects of fluid inertia on the rotational motion of an

axisymmetric slender fibre in a simple shear flow when the Reynolds number based
on the fibre length and velocity gradient is small. The inertially induced torque acting
on the fibre can be related to a volume integral involving the Stokes flow velocity
disturbance produced by the fibre by invoking the generalized reciprocal theorem.
Because the dominant contribution to the volume integral comes at distances from
the fibre axis comparable with the fibre length, the fluid velocity disturbance may
be approximated as that due to a line of forces. This approach greatly simplifies
the analysis. To validate the method and demonstrate its utility in another setting,
we use the same method to reproduce Khayat & Cox’s results for the torque on a
sedimenting fibre in the Appendix.

At zero Reynolds number, a fibre in simple shear flow rotates in one of an infinite
set of Jeffery orbits. In these orbits, the fibre axis circles around the vorticity axis
of the base flow. Within most of the orbits the fibre axis comes very close to the
flow direction and remains there for a large fraction of the time period. Fluid inertia
alters this behaviour in two ways. First, it induces a small drift across orbits so that
the fibre gradually spirals out toward the flow–gradient plane. Second, it changes the
speed at which the fibre rotates through the orbit in such a way that the temporal
period of the orbit lengthens with increasing Reynolds number, eventually diverging
as O(Rec −Re)−1, Rec being the critical Reynolds number that scales with the inverse
of the fibre aspect ratio. Above Rec, the fibre ceases to rotate and remains close to
the flow–vorticity plane, slowly migrating toward a fixed orientation near the flow
direction.

Our analysis indicates the asymptotic behaviour of the fibre rotation for Re � 1
and κ � 1. Only the leading-order Stokes flow velocity disturbance in the slender-
body limit was retained, leading to relative errors of order 1/ ln(κ). However,
previous experience suggests that the leading-order slender-body analysis gives a good
quantitative estimate of the behaviour of fibres with aspect ratios larger than about
20. One way of judging the robustness of an asymptotic analysis is by comparison
with experimental and/or numerical results. However, the experimental and numerical
results on the rotation of prolate axisymmetric bodies in simple shear flow at finite Re
are surprisingly sparse. Experimental observations of an aspect ratio 10 particle by
Karnis et al. (1966) indicate that the particle migrates to an orbit in the flow–gradient
plane in agreement with our analysis. However, the authors did not measure the rate
of migration and no experiments were done above the critical Reynolds number at
which we predict permanent flow alignment. The only numerical study of which we
are aware is that of Qi & Luo (2003) who simulated the motion of a prolate spheroid
with an aspect ratio of 2 for Re � 32. At moderate Reynolds numbers they found that
the particles axis migrated toward the flow–gradient plane and subsequently rotated
within this plane. This result suggests that the qualitative result of migration across
Jeffery orbits toward the flow–gradient plane that is predicted for the limits κ � 1 and
Re � 1 in this paper may be preserved over a wide range of particle Reynolds numbers
and aspect ratios. Further experimental and numerical studies of the rotation of non-
spherical particles would be valuable. In conducting the experimental studies one must
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take care that secondary flows have a small influence on the fibre rotation. In the
numerical studies, the boundary conditions far from the particle must be implemented
carefully as the particle-induced fluid velocity disturbance may propagate to large
distances from the fibre at larger Re.

While the analysis in this paper is restricted to Re � 1, the reciprocal theorem
formulation in § 2 is applicable for arbitrary Re. Extending the analysis to finite Re
would require solving the linearized Navier–Stokes equations for the fluid velocity
disturbance caused by the particle. As mentioned in the introduction, this analysis is
considerably more involved than that for a settling particle at finite Resed. We plan to
address this problem in a subsequent publication wherein we will also compare the
theoretical analysis with numerical solutions of the full Navier–Stokes equations.

The orientation of fibres at non-zero Reynolds numbers plays a role in a number of
applications including the orientation of pulp fibres during paper-making processes
and the use of fibres for drag reduction. While these applications may involve
higher Reynolds numbers, flexible fibres, and/or finite fibre concentrations, our results
provide a good starting point for considering the effects of the fluid inertia associated
with a mean shear flow on fibre orientation. The prediction that fibres remain aligned
with the flow direction above a critical Reynolds number may play an important role
in these applications. For example, it implies that rotary dispersion of fibre orientation
caused by turbulence (Olson & Kerekes 1998) or particle interactions (Rahnama et al.
1993) would have to overcome a finite restoring torque in order to disperse the fibre
axes away from the flow direction.

It has been widely observed that many types of fibre suspensions exhibit shear
thinning and many mechanisms have been proposed that may account for the shear
thinning in different circumstances, including fibre flexibility, fibre–fibre adhesion, and
fibre alignment due to non-Newtonian solvent stresses. Since the stress caused by a
fibre that is nearly aligned with the flow direction is much smaller than that produced
by a rotating fibre, the present analysis suggests that dramatic shear thinning would
arise in the vicinity of the critical Reynolds number for flow alignment. Since this
phenomenon occurs at a modest particle Reynolds number, it may be accessible to
rheological measurement.

This work was supported by NSF grant CTS-0332902.

Appendix. Effect of inertia on the orientation of a sedimenting fibre
In what follows, we briefly outline the application of the generalized reciprocal

theorem, introduced in § 2, to a sedimenting fibre, first for small Re in § A.1, and later
for O(1) values in § A.2 ; we compare our results to those previously obtained.

A.1. Analysis for small but finite Resed

In a reference frame moving with the velocity U of the translating fibre, the fluid
velocity disturbance field u′ satisfies the steady Oseen equations in the limit κ � 1.
Thus, the only inertial effect present is the convection of the velocity disturbance by
the free-stream velocity −U , and accordingly, we have f ′(r) = − U · ∇u′; here, as in
(2.2), f ′ represents the inertial terms in the Navier–Stokes equations. The generalized
reciprocal theorem then takes the form∫

S

n · σ ′ · ũ dS − Resed

∫
V

U · ∇u′ · ũ dV =

∫
S

n · σ̃ · u′ dS, (A 1)

where Resed =Ul/ν and V is the volume occupied by the fluid.
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The fields (ũ, σ̃ ) are again chosen to correspond to the Stokes problem of a fibre
rotating with angular velocity Ω̃ in a quiescent fluid. The subsequent manipulations
remain identical to those detailed in § 2, and one obtains

Lsed · Ω̃ = Resed

∫
V

U · ∇u′ · ũ dr (A 2)

for the torque on the translating fibre with ũ given by (2.3). All variables in (A 2)
have been made dimensionless using the velocity scale U and the length l of the
fibre. It is now shown that the dominant contribution to the volume integral in (A 2)
comes from r ∼ O(1), that is, a region around the fibre whose linear dimension scales
as the fibre length, so that the leading-order inertial correction to the fibre torque
is O(Resed). Considering a cylindrical region r̄ ∼ O(κ−1) around the fibre axis, we
observe that ũ, u′ ∼ ln r̄ , ∇u′ ∼ 1/r̄ and dV ∼ r̄ dr̄ . Thus, the near-field contribution
to the volume integral scales as ln r̄ dr̄ for r̄ ∼ O(κ−1), being asymptotically small for
large κ . Again, for distances greater than the inertial screening length, i.e. r > Re−1

sed,
u′ decays at least as fast as 1/r , while ũ, being of a dipole character, is O(1/r2).
The integrand then becomes O(1/r4), ensuring that the contribution from the outer
region is O(Resed) smaller when compared to that from r ∼ O(1).

The analysis for the first effects of inertia may therefore be carried out in Fourier
space, treating the fibre as a line distribution of forces, and using the Stokes expression
for the velocity disturbance u′. The expression for the Fourier transform of the latter
is given by

û′(k) =
1

(ln κ)
Ĝ0(k) ·

[
U · (I − 1

2
p p)

]sin{2π(k · p)}
2π(k · p)

, (A 3)

where the definition of the Fourier transform is the same as that used previously in
the text, namely that given by equations (3.1) and (3.2). One obtains for the torque,

Lsed · Ω̃ = Resed

∫
V

(U · ∇u′) · ũ dr

= Resed

∫
−2πik · Uû′(−k) · ˆ̃u(k) dk. (A 4)

Since Ω̃ is arbitrary, we have

Lsed=− 4 Resed

π2(ln κ)2
U ·

(
I − 1

2
p p

)
U:

[∫
k

(k · p)

(
I
k4

− kk
k6

)
sin(2πk · p)j1(2πk · p) dk

]
∧ p,

(A 5)

where we have used the expression for ˆ̃u(k) from § 2, and (3.7) for Ĝ0(k). In a
fibre-aligned coordinate system with the 1- and 2-directions in the plane of settling
(spanned by p and U), the former being along the fibre axis p, the only non-zero
component of the torque is perpendicular to this plane; thus, (A 5) reduces to

(Lsed)3 = −2Resed

π2

sin 2θ

(ln κ)2

∫ (
k2

1 + k2
3 − k2

2

/
2
)

k6
sin(2πk1)j1(2πk1) dk, (A 6)

where θ is the angle between U and p. Using polar coordinates in the (k2, k3)-plane,
the integral in (A 6) can be expressed in terms of standard integrals involving the
spherical Bessel function j1, readily available, for instance, in Gradshteyn & Ryzhik
(1965). The Fourier integral is thus found to be 5π3/12, whence the dimensional
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inertial torque is given by

(Lsed)3 = − 5π

6(ln κ)2
sin 2θResed(µUl2). (A 7)

This is verified as being identical to the result obtained by Khayat & Cox (1989) in
the limit Resed � 1 – see equation (6.22) in their paper.

A.2. Finite-Resed analysis

For O(1) values of Resed, the expression for the inertial torque in terms of the volume
integral in (A 2) is still valid. The velocity disturbance u′ now corresponds to finite
Resed and is obtained by solving the linearized Navier–Stokes equations. In the small-
Resed analysis above, the fibre forcing per unit length was taken to be the same as its
inertialess value, this being consistent with the order of terms retained therein. For
the finite-Resed case, the force per unit length of the translating fibre is, in principle,
an unknown, and must be treated as such when solving the equations of motion.
Provided the Reynolds number based on the fibre diameter, Red sed = Ud/ν, is small,
however, one may continue to use the Stokes value for the fibre forcing. In order to
see this, we first note that the drag per unit length on a fibre in the limit Resed � 1, i.e.
with the inertial screening length (ν/U ) being much smaller l, is O(1/ ln(Red

−1
sed)). This

result may, of course, be obtained from analysing the two-dimensional problem of an
infinite cylinder translating at small but finite Red sed (for instance, see Proudman &
Pearson 1957). Since Red sed = Resed/κ , the drag per unit length in the limit Resed � 1
may be expanded as

lim
Resed�1

ffibre = O

(
1

ln κ

)
+ O

(
ln Resed

(ln κ)2

)
, (A 8)

where the leading term is the value of forcing for Resed = 0. It is then evident that so
long as Resed � κ (or Red sed � 1), it suffices to use the fibre forcing in the inertialess
limit even for finite Resed. Thus, the Stokes value for the fibre forcing remains a
good approximation as long as the region around it, of extent its own diameter,
remains viscous dominated. This fact allowed us, in the earlier section, to estimate the
contribution from the inner region of (dimensionless) extent O(κ−1) around the fibre
to be asymptotically small, being of O(ln κ/κ). This estimate, though independent of
Resed, is valid provided Red sed � 1, and allows the analysis to again be performed in
Fourier space for large κ .

The torque is still given by the Fourier integral in (A 4), with the Fourier transform
û′(k) of the fibre velocity disturbance:

û′(k) =
8π

(ln κ)

[
U · (I − 1

2
p p)

]
· (I − kk/k2)

[Resed2πik · U + (2πk)2]

sin{2π(k · p)}
2π(k · p)

, (A 9)

obtained from Fourier transforming the Oseen equation. Using (A 9), we obtain the
finite-Resed analogue of (A 5):

Lsed = −16 Resed

(ln κ)2
U

·
(
I − 1

2
p p

)
U:

[∫
k(I/k2 − kk/k4)

(k · p)[Resed2πik · U + (2πk)2]
sin(2πk · p)j1(2πk · p) dk

]
∧ p.

(A 10)



412 G. Subramanian and D. L. Koch

In order to evaluate the integral in (A 10), we use the following relations for the
spherical Bessel functions:

j0(2πk · p) =
sin(2πk · p)

2πk · p
=

1

2

∫ 1

−1

e−i2π(k · p)s ds, (A 11)

j1(2πk · p) =
i

2

∫ 1

−1

e−i2π(k · p)ss ds. (A 12)

Substituting, the Fourier integral becomes

−16 Resed

(ln κ)2
[
U ·

(
I − 1

2
p p

)]
·
[

i

4

∫ 1

−1

∫ 1

−1

ds ds ′s ′

×
∫

(k · U)(I/k2 − kk/k4)

[Resed2πik · U + (2πk)2]
e−i2πk · p(s+s ′) dk

]
∧ p,

which may be rewritten as

2 Resed

π(ln κ)2
[
U ·

(
I − 1

2
p p

)]
·
{∫ 1

−1

∫ 1

−1

ds ds ′s ′U · ∂

∂ r

[
I

∫
dk

e−i2πk · a

k2[Resed2πik · U + (2πk)2]

+
1

4π2

∂2

∂ r∂ r

∫
dk

e−i2πk · a

k4[Resed2πik · U + (2πk)2]

]}
∧ p, (A 13)

where the vector a = p(s + s ′). It may be shown that the non-trivial integrands in
(A 13) are only functions of w = s + s ′. It is convenient to choose a coordinate system
with U = U11, whence p = (sin θ12 − cos θ11), θ again being the angle between U and
p. Thus, k1 is the Fourier coordinate along, and (k2, k3) the coordinates transverse
to the direction of translation. Integration with respect to k1 can be formulated as
a contour integral. The denominators of the two integrands are fourth-order and
sixth-order polynomials in k1, respectively. The former may be shown to have four
roots along the imaginary axis in the complex k1-plane, while the latter has the same
four roots, two of them being repeated ones; the roots in either case are only functions
of kt = (k2

2 + k2
3)

1/2. Application of the method of residues then leads to an expression
in terms of exponentials of ktw. On changing to polar coordinates in the transverse
plane, namely k2 = kt cos φ, k3 = kt cos φ, the integration over φ can be carried out
simply, yielding cylindrical Bessel functions of ktw of the zeroth order. The resulting
integrals are then of a standard form and may be shown to yield the expression for
the torque found by Khayat & Cox in equation (6.6) of their paper. The torque in
the final form is given by

Lsed

µUl2
= −2π sin θ

(ln κ)2

[
cos θ

Resed(1 − cos θ)

{
2 + 2

exp(−Resed(1 − cos θ)) − 1

Resed(1 − cos θ)

− E1[Resed(1 − cos θ)] − ln[Resed(1 − cos θ)] − γ } +
cos θ

Resed(1 + cos θ)

×
{

2 + 2
exp(−Resed(1 + cos θ)) − 1

Resed(1 + cos θ)
− E1[Resed(1 + cos θ)]
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− ln[Resed(1 + cos θ)] − γ } − 2

{
1

Resed(1 − cos θ)

×
(

1 − 1 − exp(−Resed(1 − cos θ))

Resed(1 − cos θ)

)
− 1

Resed(1 + cos θ)

×
(

1 − 1 − exp(−Resed(1 + cos θ))

Resed(1 + cos θ)

)}]
, (A 14)

where γ is Euler’s constant and

E1(z) =

∫ ∞

z

e−τ

τ
dτ.
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